A328927 Decimal expansion of (9^2 + (19^2)/22)^(1/4): an approximation for Pi from Srinivasa Ramanujan.
3, 1, 4, 1, 5, 9, 2, 6, 5, 2, 5, 8, 2, 6, 4, 6, 1, 2, 5, 2, 0, 6, 0, 3, 7, 1, 7, 9, 6, 4, 4, 0, 2, 2, 3, 7, 1, 5, 5, 7, 8, 7, 7, 9, 8, 3, 1, 6, 0, 1, 2, 6, 1, 4, 9, 6, 9, 5, 1, 3, 5, 3, 2, 7, 9, 1, 8, 6, 2, 1, 0, 5, 8, 8, 4, 9, 7, 8, 1, 0, 1, 1, 2, 3, 4, 0, 8, 9, 2, 6, 0, 9, 5, 7, 0, 3, 9, 5, 5, 5
Offset: 1
Examples
3.141592652582646125206037179644022371557877983160126149695135327918621058849...
References
- Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved 5 June 2013, (4.18), page 58.
- Martin Gardner, "Slicing Pi into Millions", Discover, 6:50, January 1985.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.
Links
- William R. Corliss, The Secret Of It All Is In The Pi, Science Frontiers #37, Jan-Feb 1985.
- Martin Gardner, Slicing Pi into Millions, in: Gardner's Why and Wherefores, Prometheus Books (1999), p.87.
- Srinivasa Ramanujan, Modular equations and approximations to Pi, Quarterly Journal of Mathematics, XLV, 1914, 43-44.
- Zurab Silagadze, The origin of the Ramanujan's π^4 ≈ 2143/22 identity, MathOverflow.net, Feb 26 2016.
- Wikipedia, Approximations of π: Miscellaneous_approximations.
Programs
-
Maple
evalf((9^2 + (19^2)/22)^(1/4),125);
-
Mathematica
RealDigits[Surd[9^2 + (19^2)/22, 4], 10, 120][[1]] (* Amiram Eldar, Jun 18 2023 *)
-
PARI
A328927_first(N)=localprec(N+9); digits(10^N\sqrtn(22/.2143,4)) \\ First N terms of the sequence, i.e., a(1, 0, -1, ..., 2-N). - M. F. Hasler, Jun 22 2022
Formula
Equals (102 - 2222/(22^2))^(1/4) = (2143/22)^(1/4).
Comments