This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328931 #26 Mar 12 2024 19:41:33 %S A328931 1,1,4,51,660,30745,1621471,312637285,72599875346,60968508324409, %T A328931 64128000370443037,240651566540823214362,1162174738476331286327484, %U A328931 19776621796151182708398884540,441809773825445785471324877668710 %N A328931 Number of Hamiltonian paths in an n X n square, starting from an edge, finishing anywhere, all symmetries excluded. %C A328931 Given an n X n grid, start from any outside edge, enter the grid, and visit every square. 1 X 1 is a trivial example. 2 X 2 can only be traversed clockwise or counterclockwise (therefore considered the same solution). For 3 X 3 with the cells labeled ABC/DEF/GHI, the four solutions are ADEBCFIHG, ADGHIFEBC, ADGHIFCE and ADGHEBCFI. All others are rotations or reflections. %C A328931 Discovered programmatically by exhaustive recursive search. %H A328931 David Lawrence, <a href="/A328931/a328931_1.txt">All paths up to 4 X 4</a> %e A328931 All distinct paths through a 1 X 1 labyrinth visiting all cells. %e A328931 + + %e A328931 |**| %e A328931 +--+ %e A328931 . %e A328931 All distinct paths through a 2 X 2 labyrinth visiting all cells. %e A328931 + +--+ %e A328931 | |**| %e A328931 + + + %e A328931 | | %e A328931 +--+--+ %e A328931 . %e A328931 All distinct paths through a 3 X 3 labyrinth visiting all cells. %e A328931 + +--+--+ %e A328931 | | | %e A328931 + + + + %e A328931 | | | %e A328931 +--+--+ + %e A328931 |** | %e A328931 +--+--+--+ %e A328931 . %e A328931 + +--+--+ %e A328931 | | **| %e A328931 + + +--+ %e A328931 | | | %e A328931 + +--+ + %e A328931 | | %e A328931 +--+--+--+ %e A328931 . %e A328931 + +--+--+ %e A328931 | | | %e A328931 + + + + %e A328931 | |**| | %e A328931 + +--+ + %e A328931 | | %e A328931 +--+--+--+ %e A328931 . %e A328931 + +--+--+ %e A328931 | | | %e A328931 + + + + %e A328931 | | | | %e A328931 + + + + %e A328931 | |**| %e A328931 +--+--+--+ %Y A328931 Cf. A120443, A121789, A145157, A265914. %K A328931 nonn,more %O A328931 1,3 %A A328931 _David Lawrence_, Oct 31 2019 %E A328931 a(8)-a(15) from _Andrew Howroyd_, Oct 31 2019