A328936
The number of imprimitive Carmichael numbers (A328935) below 10^n.
Original entry on oeis.org
4, 11, 25, 63, 134, 268, 508, 1013, 1901, 3773, 7208, 13834, 26353, 50343, 96122, 184354, 354218
Offset: 6
a(6) = 4 since there are 4 imprimitive Carmichael numbers below 10^6: 294409, 399001, 488881, 512461.
A328937
The number of imprimitive 3-Carmichael numbers (A087788 and A328935) below 10^n.
Original entry on oeis.org
4, 11, 25, 59, 127, 252, 471, 928, 1734, 3462, 6615, 12725, 24396, 46877, 89854, 173331, 334737, 647265, 1253176
Offset: 6
a(6) = 4 since there are 4 imprimitive 3-Carmichael numbers below 10^6: 294409, 399001, 488881, 512461.
A328938
Least imprimitive Carmichael number (A328935) with n prime factors, or -1 if no such number exists.
Original entry on oeis.org
294409, 167979421, 1152091655881, 62411762908817281, 1516087654274358001
Offset: 3
A335584
Carmichael numbers (A002997) that are not minimal in their family.
Original entry on oeis.org
294409, 488881, 1152271, 3057601, 3828001, 6189121, 17098369, 19384289, 53711113, 56052361, 64377991, 82929001, 115039081, 118901521, 171454321, 172947529, 214852609, 216821881, 228842209, 279377281, 288120421, 328573477, 366652201, 492559141, 542497201
Offset: 1
294409 = 37*73*109 is a Carmichael number, belonging to family 36:72:108 = 1:2:3. However, 1729 = 7*13*19 is smaller Carmichael number, and the family 6:12:18 = 1:2:3 is the same. Therefore 294409 belongs to this sequence.
-
is(m)=!is_A002997(m)&&return(0);f=factor(m);p=f[,1]~;r=apply(x->x-1,p);g=gcd(r);a=r/g;for(i=1,g-1,t=prod(j=1,#a,i*a[j]+1);bigomega(t)==bigomega(m)&&is_A002997(t)&&return(1));0 \\ use with suitable PROG from A002997
Showing 1-4 of 4 results.
Comments