This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328940 #6 Nov 01 2019 18:35:19 %S A328940 1,2,3,23,31,61,62,173075,259698,332429,2147535,21217059,72517101 %N A328940 Numbers k such that k divides A003754(k+1). %C A328940 Numbers that divide the value of their dual Zeckendorf representation (A104326) when read as a binary number. %C A328940 Analogous to A276488, with dual Zeckendorf representation instead of Zeckendorf representation (A014417). %C A328940 The corresponding values of A003754(k+1) are 1, 2, 3, 46, 62, 183, 186, 15576750, 28826478, 45542773, 534736215, 15934011309, 100218633582, ... and the corresponding quotients are 1, 1, 1, 2, 2, 3, 3, 90, 111, 137, 249, 751, 1382, ... %C A328940 a(14) > 3*10^9, if it exists. %e A328940 23 is in the sequence since the dual Zeckendorf representation of 23 is 101110 that equals 46 when read as a binary number, and 23|46. %t A328940 fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n * Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; fr]; %t A328940 dz[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i+1]] == 0 && v[[i+2]] == 0, v[[i]] = 0; v[[i+1]] = 1; v[[i+2]] = 1; If[i>2, i-=3]]; i++];i=Position[v,_?(#>0&)]; If[i=={},{0}, v[[i[[1,1]];;-1]]]]; %t A328940 aQ[n_] := Divisible[FromDigits[dz[n], 2], n]; Select[Range[100], aQ] %t A328940 (* after _Robert G. Wilson v_ at A014417 and _Ron Knott_'s Maple code at A104326 *) %Y A328940 Cf. A003754, A014417, A104326, A276488. %K A328940 nonn,more %O A328940 1,2 %A A328940 _Amiram Eldar_, Oct 31 2019