This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328956 #18 Jul 28 2024 10:08:03 %S A328956 6,10,12,14,15,18,20,21,22,24,26,28,33,34,35,38,39,40,44,45,46,48,50, %T A328956 51,52,54,55,56,57,58,60,62,63,65,68,69,74,75,76,77,80,82,84,85,86,87, %U A328956 88,90,91,92,93,94,95,96,98,99,104,106,111,112,115,116,117 %N A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222. %C A328956 First differs from A084227 in having 60. %H A328956 Amiram Eldar, <a href="/A328956/b328956.txt">Table of n, a(n) for n = 1..10000</a> %F A328956 A000005(a(n)) = A001222(a(n)) * A001221(a(n)). %e A328956 The sequence of terms together with their prime indices begins: %e A328956 6: {1,2} %e A328956 10: {1,3} %e A328956 12: {1,1,2} %e A328956 14: {1,4} %e A328956 15: {2,3} %e A328956 18: {1,2,2} %e A328956 20: {1,1,3} %e A328956 21: {2,4} %e A328956 22: {1,5} %e A328956 24: {1,1,1,2} %e A328956 26: {1,6} %e A328956 28: {1,1,4} %e A328956 33: {2,5} %e A328956 34: {1,7} %e A328956 35: {3,4} %e A328956 38: {1,8} %e A328956 39: {2,6} %e A328956 40: {1,1,1,3} %e A328956 44: {1,1,5} %e A328956 45: {2,2,3} %t A328956 Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&] %o A328956 (PARI) is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ _Amiram Eldar_, Jul 28 2024 %Y A328956 Zeros of A328958. %Y A328956 The complement is A328957. %Y A328956 Prime signature is A124010. %Y A328956 Omega-sequence is A323023. %Y A328956 omega(n) * Omega(n) is A113901(n). %Y A328956 (Omega(n) - 1) * omega(n) is A307409(n). %Y A328956 sigma_0(n) - omega(n) * Omega(n) is A328958(n). %Y A328956 sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n). %Y A328956 Cf. A000040, A005117, A060687, A070175, A090858, A112798, A303555, A320632, A328960, A328961, A328962, A328963, A328964, A328965. %K A328956 nonn %O A328956 1,1 %A A328956 _Gus Wiseman_, Nov 01 2019