A328957 Numbers k such that sigma_0(k) != omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 42, 43, 47, 49, 53, 59, 61, 64, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 89, 97, 100, 101, 102, 103, 105, 107, 108, 109, 110, 113, 114, 120, 121, 125, 127, 128, 130, 131, 137
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 13: {6} 16: {1,1,1,1} 17: {7} 19: {8} 23: {9} 25: {3,3} 27: {2,2,2} 29: {10} 30: {1,2,3} 31: {11} 32: {1,1,1,1,1}
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[100],DivisorSigma[0,#]!=PrimeOmega[#]*PrimeNu[#]&]
-
PARI
is(k) = {my(f = factor(k)); numdiv(f) != omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024