This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328960 #7 Nov 06 2019 12:43:02 %S A328960 0,0,0,0,0,0,1,2,6,10,18,28,45,63,93,129,178,238,321,419,551,708,911, %T A328960 1158,1472,1845,2316,2883,3583,4421,5453,6680,8180,9964,12122,14687, %U A328960 17771,21418,25788,30949,37092,44324,52906,62980,74885,88832,105243,124429 %N A328960 Number of integer partitions of n whose number of nontrivial submultisets is greater than their number of distinct parts times their number of parts minus 1. %C A328960 These partitions are conjectured to be precisely those that have a pair of multiset partitions such that no part of one is a submultiset of any part of the other (see A320632). For example, such a pair of partitions of {1,1,2,2} is ({{1,1},{2,2}}, {{1,2},{1,2}}). %e A328960 The a(6) = 1 through a(10) = 18 partitions: %e A328960 (2211) (3211) (3221) (3321) (3322) %e A328960 (22111) (3311) (4221) (4321) %e A328960 (4211) (4311) (4411) %e A328960 (22211) (5211) (5221) %e A328960 (32111) (32211) (5311) %e A328960 (221111) (33111) (6211) %e A328960 (42111) (32221) %e A328960 (222111) (33211) %e A328960 (321111) (42211) %e A328960 (2211111) (43111) %e A328960 (52111) %e A328960 (222211) %e A328960 (322111) %e A328960 (331111) %e A328960 (421111) %e A328960 (2221111) %e A328960 (3211111) %e A328960 (22111111) %e A328960 For example, the partition (4,2,2,1,1) has 16 nontrivial submultisets: {(1), (2), (4), (11), (21), ..., (2211), (4211), (4221)}, and 5 parts, 3 of which are distinct. Since 16 > (5 - 1) * 3 = 12, the partition (42211) is counted under a(10) %t A328960 Table[Length[Select[IntegerPartitions[n],0<Times@@(1+Length/@Split[#])-2-(Length[#]-1)*Length[Union[#]]&]],{n,0,30}] %Y A328960 The Heinz numbers of these partitions are conjectured to be A320632. %Y A328960 A307409(n) is (omega(n) - 1) * nu(n). %Y A328960 A328958(n) is sigma_0(n) - omega(n) * nu(n). %Y A328960 A328959(n) is sigma_0(n) - 2 - (omega(n) - 1) * nu(n). %Y A328960 Cf. A008284, A032741, A116608, A328956, A328961, A328963. %K A328960 nonn %O A328960 0,8 %A A328960 _Gus Wiseman_, Nov 02 2019