This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328965 #21 Nov 04 2019 15:19:12 %S A328965 1,4,6,16,12,64,24,256,48,60,96,4096,120,16384,384,240,420,262144,480, %T A328965 1048576,840,960,6144,16777216,1680,4620,24576,3840,3360,1073741824, %U A328965 7680,4294967296,6720,15360,393216,18480,13440,274877906944,1572864,61440,26880,4398046511104 %N A328965 Smallest k such that (bigomega(k) - 1) * omega(k) = n, and 0 if none exists, where omega = A001221, bigomega = A001222. %C A328965 For n > 0, a(n) is of the form 2^k*primorial(d) where d is a divisor of n and k = n / d - d + 1. a(n) is never 0 since A307409(2^(n+1)) = n. - _Andrew Howroyd_, Nov 04 2019 %H A328965 Andrew Howroyd, <a href="/A328965/b328965.txt">Table of n, a(n) for n = 0..1000</a> %F A328965 From _Andrew Howroyd_, Nov 03 2019: (Start) %F A328965 a(p) = 2^(p + 1) for odd prime p. %F A328965 a(n) = min_{d|n, d<=n/d+1} 2^(n/d-d+1)*A002110(d) for n > 0. (End) %e A328965 The sequence of terms together with their prime signatures begins: %e A328965 1: () %e A328965 4: (2) %e A328965 6: (1,1) %e A328965 16: (4) %e A328965 12: (2,1) %e A328965 64: (6) %e A328965 24: (3,1) %e A328965 256: (8) %e A328965 48: (4,1) %e A328965 60: (2,1,1) %e A328965 96: (5,1) %e A328965 4096: (12) %e A328965 120: (3,1,1) %e A328965 16384: (14) %e A328965 384: (7,1) %e A328965 240: (4,1,1) %e A328965 420: (2,1,1,1) %t A328965 dat=Table[(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}]; %t A328965 Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}] %o A328965 (PARI) a(n)={if(n<1, 1, my(m=oo); fordiv(n, d, if(d<=n/d+1, m=min(m, 2^(n/d-d+1)*vecprod(primes(d))))); m)} \\ _Andrew Howroyd_, Nov 04 2019 %Y A328965 Positions of first appearances in A307409. %Y A328965 Cf. A001221, A001222, A002110, A113901, A124010, A320632, A323023, A328956, A328958, A328959, A328962, A328963, A328964. %K A328965 nonn %O A328965 0,2 %A A328965 _Gus Wiseman_, Nov 02 2019 %E A328965 Terms a(23) and beyond from _Andrew Howroyd_, Nov 03 2019