This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328967 #12 Mar 31 2021 14:48:34 %S A328967 1,0,0,-1,0,-2,0,-3,1,-4,0,-5,3,-6,1,-8,5,-9,3,-10,8,-13,4,-14,15,-16, %T A328967 7,-21,15,-22,14,-23,27,-28,14,-32,32,-33,20,-42,41,-43,32,-44,50,-57, %U A328967 33,-58,71,-61,46,-75,70,-76,59,-82,98,-95,62,-96,117,-97,81,-122,131 %N A328967 a(n+1) = 1 - Sum_{k=1..n} a(floor(n/k)). %F A328967 G.f. A(x) satisfies: A(x) = (x/(1 - x)) * (1 - Sum_{k>=1} (1 - x^k) * A(x^k)). %t A328967 a[n_] := a[n] = 1 - Sum[a[Floor[(n - 1)/k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 65}] %t A328967 A281487[1] = 1; A281487[n_] := A281487[n] = -Sum[A281487[d], {d, Divisors[n - 1]}]; Table[A281487[n], {n, 1, 65}] // Accumulate %o A328967 (Python) %o A328967 from functools import lru_cache %o A328967 @lru_cache(maxsize=None) %o A328967 def A328967(n): %o A328967 if n == 0: %o A328967 return 1 %o A328967 c, j = n-1, 1 %o A328967 k1 = (n-1)//j %o A328967 while k1 > 1: %o A328967 j2 = (n-1)//k1 + 1 %o A328967 c += (j2-j)*A328967(k1) %o A328967 j, k1 = j2, (n-1)//j2 %o A328967 return j-c # _Chai Wah Wu_, Mar 31 2021 %Y A328967 Cf. A003318, A281487 (first differences). %K A328967 sign %O A328967 1,6 %A A328967 _Ilya Gutkovskiy_, Feb 25 2020