This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328995 #13 Sep 20 2020 15:14:45 %S A328995 1,2,2,2,0,2,2,2,2,0,2,2,2,2,0,4,2,2,2,0,0,2,4,2,0,2,2,2,2,0,2,0,2,2, %T A328995 0,2,4,2,2,0,2,4,0,4,0,2,2,2,0,0,4,2,2,0,0,2,2,2,2,0,2,2,2,2,0,0,2,4, %U A328995 2,0,2,4,2,2,0,0,2,2,4,0,4,2,0,2,0 %N A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)). %D A328995 Baake, Michael, and Peter AB Pleasants. "Algebraic solution of the coincidence problem in two and three dimensions." Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See p. 713. %D A328995 Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995. %H A328995 Baake, Michael, and Peter AB Pleasants, <a href="/A031358/a031358.pdf">Algebraic solution of the coincidence problem in two and three dimensions</a>, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. [Annotated scan of page 713 only]. %o A328995 (PARI) t1=direuler(p=2,2400,(1+(p%3<2)*X)) %o A328995 t2=direuler(p=2,2400,1/(1-(p%3<2)*X)) %o A328995 t3=dirmul(t1,t2) %o A328995 t4=vector(200,n,t3[6*n+1]) \\ (and then prepend 1) %Y A328995 Cf. A031358. %K A328995 nonn %O A328995 0,2 %A A328995 _N. J. A. Sloane_, Nov 14 2019