cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)).

This page as a plain text file.
%I A328995 #13 Sep 20 2020 15:14:45
%S A328995 1,2,2,2,0,2,2,2,2,0,2,2,2,2,0,4,2,2,2,0,0,2,4,2,0,2,2,2,2,0,2,0,2,2,
%T A328995 0,2,4,2,2,0,2,4,0,4,0,2,2,2,0,0,4,2,2,0,0,2,2,2,2,0,2,2,2,2,0,0,2,4,
%U A328995 2,0,2,4,2,2,0,0,2,2,4,0,4,2,0,2,0
%N A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)).
%D A328995 Baake, Michael, and Peter AB Pleasants. "Algebraic solution of the coincidence problem in two and three dimensions." Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See p. 713.
%D A328995 Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995.
%H A328995 Baake, Michael, and Peter AB Pleasants, <a href="/A031358/a031358.pdf">Algebraic solution of the coincidence problem in two and three dimensions</a>, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. [Annotated scan of page 713 only].
%o A328995 (PARI) t1=direuler(p=2,2400,(1+(p%3<2)*X))
%o A328995 t2=direuler(p=2,2400,1/(1-(p%3<2)*X))
%o A328995 t3=dirmul(t1,t2)
%o A328995 t4=vector(200,n,t3[6*n+1]) \\ (and then prepend 1)
%Y A328995 Cf. A031358.
%K A328995 nonn
%O A328995 0,2
%A A328995 _N. J. A. Sloane_, Nov 14 2019