This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329006 #6 Nov 23 2019 13:40:23 %S A329006 1,5,7,85,341,455,5461,21845,9709,349525,1398101,1864135,22369621, %T A329006 89478485,119304647,1431655765,5726623061,2545165805,91625968981, %U A329006 366503875925,488671834567,5864062014805,23456248059221,31274997412295,375299968947541,15011998757901653 %N A329006 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(2) as in A327320. %C A329006 a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). %e A329006 See Example in A327320. %t A329006 c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; %t A329006 r = Sqrt[2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; %t A329006 Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327320 *) %t A329006 Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329005 *) %t A329006 Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329006 *) %t A329006 Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329007 *) %t A329006 (* _Peter J. C. Moses_, Nov 01 2019 *) %Y A329006 Cf. A327320, A329005, A329007. %K A329006 nonn %O A329006 1,2 %A A329006 _Clark Kimberling_, Nov 08 2019