This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329009 #11 Mar 05 2022 14:13:01 %S A329009 1,4,52,80,1936,5824,69952,52480,2519296,7558144,90698752,136048640, %T A329009 3265171456,9795518464,117546237952,44079841280,4231664828416, %U A329009 12694994550784,152339934871552,228509902438400,5484237659570176,16452712979759104,197432555761303552 %N A329009 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321. %C A329009 a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). %F A329009 a(n) = 2^(n - 1 - A001511(n))*(3^n - 1). - _Peter Luschny_, Mar 05 2022 %e A329009 See Example in A327321. %p A329009 A329009 := n -> 2^(n - 1 - padic[ordp](2*n, 2))*(3^n - 1): %p A329009 seq(A329009(n), n = 1..22); # _Peter Luschny_, Mar 05 2022 %t A329009 c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; %t A329009 r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; %t A329009 Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *) %t A329009 Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *) %t A329009 Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *) %t A329009 Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *) %t A329009 (* _Peter J. C. Moses_, Nov 01 2019 *) %Y A329009 Cf. A327321, A329008, A329010, A001511. %K A329009 nonn %O A329009 1,2 %A A329009 _Clark Kimberling_, Nov 08 2019