This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329010 #6 Nov 23 2019 13:40:59 %S A329010 1,7,151,371,13981,64477,1176211,1333003,96366841,434627347, %T A329010 7833057871,17636587241,635161281301,2858836117417,51465153629131, %U A329010 28951056265019,4169104690053361,18761352574966687,337708161046665991,759848130726580511,27354628073588539021 %N A329010 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321. %C A329010 a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). %e A329010 See Example in A327321. %t A329010 c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; %t A329010 r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; %t A329010 Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327321 *) %t A329010 Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329008 *) %t A329010 Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329009 *) %t A329010 Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329010 *) %t A329010 (* _Peter J. C. Moses_, Nov 01 2019 *) %Y A329010 Cf. A327321, A329008, A329009. %K A329010 nonn %O A329010 1,2 %A A329010 _Clark Kimberling_, Nov 08 2019