This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329012 #7 Dec 07 2019 01:43:59 %S A329012 1,7,52,406,16496,27664,1663936,2081968,18513664,833245952, %T A329012 16665967616,13888655872,1666655481856,8333310963712,55555495903232, %U A329012 104166621927424,16666663803355136,9259258622967808,1666666620853682176,4166666620853682176,55555555311219638272 %N A329012 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322. %C A329012 a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)). Conjecture: there is no upper bound for the number of consecutive equal digits among numbers in this sequence, as suggested, for example, by 34 straight 1's in a(96) and 38 straight 6's in a(97). %e A329012 See Example in A327322. %t A329012 c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; %t A329012 r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; %t A329012 Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327322 *) %t A329012 Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329011 *) %t A329012 Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329012 *) %t A329012 Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329013 *) %t A329012 (* _Peter J. C. Moses_, Nov 01 2019 *) %Y A329012 Cf. A327320, A327321, A329011, A329013. %K A329012 nonn,easy %O A329012 1,2 %A A329012 _Clark Kimberling_, Nov 23 2019