cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329013 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.

This page as a plain text file.
%I A329013 #5 Dec 07 2019 01:44:08
%S A329013 1,12,147,1836,116721,301644,27679401,52496748,704739609,47763633852,
%T A329013 1436395799961,1798109838252,323942200421841,2430837436077972,
%U A329013 24315999958264707,68401618078375404,16418241358998948801,13682794309260216588,3694504558135555477881
%N A329013 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.
%C A329013 a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
%e A329013 See Example in A327322.
%t A329013 c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
%t A329013 r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
%t A329013 Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327322 *)
%t A329013 Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329011 *)
%t A329013 Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329012 *)
%t A329013 Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329013 *)
%t A329013 (* _Peter J. C. Moses_, Nov 01 2019 *)
%Y A329013 Cf. A327320, A327321, A329011, A329012.
%K A329013 nonn,easy
%O A329013 1,2
%A A329013 _Clark Kimberling_, Nov 23 2019