A329014 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323.
1, 5, 31, 185, 1111, 6665, 5713, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 1599268655, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 447692870211793, 18803100548895305, 112818603293371831
Offset: 1
Examples
See Example in A327323.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327323 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329014 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329015 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329016 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments