A329015 a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323.
1, 17, 229, 2873, 35101, 424337, 729667, 61370153, 736832461, 8843942657, 106137077509, 1273693758233, 15284569239421, 26202293082311, 2200998722429749, 26412015186735113, 316944334828711981, 3803332780883996897, 45639997185305228389, 547679985297149068793
Offset: 1
Examples
See Example in A327323.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327323 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329014 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329015 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329016 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments