A329016 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323.
1, 29, 643, 12905, 246931, 4605809, 12096589, 1543657385, 28000191811, 506361400289, 9140442629803, 164813279007065, 2969777450503891, 7641502403030567, 963209052615434683, 17341940195247239945, 312200873244313891171, 5620121165426149334849
Offset: 1
Examples
See Example in A327323.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327323 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329014 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329015 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329016 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments