This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329022 #13 Jul 02 2020 08:49:17 %S A329022 1,14,7,3,6,4,8,5,10,2,9,17,28,43,13,15,26,24,11,20,32,48,29,44,63,25, %T A329022 12,21,34,18,30,45,27,16,31,19,35,22,39,57,36,23,37,54,75,51,71,95,68, %U A329022 91,65,46,69,49,33,53,74,50,70,47,66,89,116,42,40,58,80,55,38,56,77,102,131,52,72,96,124 %N A329022 Squares visited by a knight moving on a diagonal spiral numbered board and moving to the lowest available unvisited square at each step. %C A329022 This sequence uses a diagonal spiral of numbers to enumerate the squares on the board. The knight starts on the square with number 1. At each step the knight goes to an unvisited square with the smallest number. %C A329022 The sequence if finite. After 3722 steps the square with number 3541 is visited, after which all neighboring squares have been visited. %H A329022 Scott R. Shannon, <a href="/A329022/b329022.txt">Table of n, a(n) for n = 1..3723</a> %H A329022 Scott R. Shannon, <a href="/A329022/a329022.png">Image showing the 3722 steps of the knight's path</a>. The green dot is the starting square and the red dot the final square. Blue dots show the eight occupied squares surrounding the final square. %H A329022 N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (2019). %e A329022 The board is numbered in a spiral moving along the diagonals of the square grid: %e A329022 . %e A329022 19 %e A329022 / \ %e A329022 / \ %e A329022 20 9 18 %e A329022 / / \ \ %e A329022 / / \ \ %e A329022 21 10 3 8 17 %e A329022 / / / \ \ \ %e A329022 / / / \ \ \ %e A329022 22 11 4 1 --- 2 7 16 %e A329022 \ \ \ / / . %e A329022 \ \ \ / / . %e A329022 23 12 5 --- 6 15 28 %e A329022 \ \ / / %e A329022 \ \ / / %e A329022 24 13 -- 14 27 %e A329022 \ / %e A329022 \ / %e A329022 25 -- 26 %e A329022 . %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 76 | 53 | 34 | 19 | 32 | 49 | 70 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 54 | 35 | 20 | 9 | 18 | 31 | 48 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 36 | 21 | 10 | 3 | 8 | 17 | 30 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 22 | 11 | 4 | 1 | 2 | 7 | 16 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 38 | 23 | 12 | 5 | 6 | 15 | 28 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 58 | 39 | 24 | 13 | 14 | 27 | 44 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 | 82 | 59 | 40 | 25 | 26 | 43 | 64 | %e A329022 +----+----+----+----+----+----+----+ %e A329022 . %Y A329022 Cf. A316667. %Y A329022 Cf. A010751(n), A305258(n) for coordinates of point number n+1. %K A329022 nonn,fini,full,walk %O A329022 1,2 %A A329022 _Scott R. Shannon_, Nov 02 2019