cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329023 Number of length-n ternary words having at most 5 palindromic subwords (including the empty word).

Original entry on oeis.org

1, 3, 9, 27, 81, 42, 54, 66, 78, 96, 120, 144, 174, 216, 264, 318, 390, 480, 582, 708, 870, 1062, 1290, 1578, 1932, 2352, 2868, 3510, 4284, 5220, 6378, 7794, 9504, 11598, 14172, 17298, 21102, 25770, 31470, 38400, 46872, 57240, 69870, 85272, 104112, 127110, 155142
Offset: 0

Views

Author

Jeffrey Shallit, Nov 02 2019

Keywords

Examples

			For n=6 the examples are 001200, 001201, 010210, 011201, 012001, 012010, 012011, 012012, 012201 under permutation of the letters.
		

Crossrefs

Cf. A164317(n).

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 1, 1}, {1, 3, 9, 27, 81, 42, 54, 66, 78}, 50] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    Vec((1 + 3*x + 9*x^2 + 26*x^3 + 77*x^4 + 30*x^5 + 18*x^6 - 42*x^7 - 45*x^8) / (1 - x^3 - x^4) + O(x^47)) \\ Colin Barker, Nov 02 2019; adapted to a(0)=1 by Georg Fischer, Dec 03 2019

Formula

a(n) = a(n-3) + a(n-4) for n >= 9.
a(n) = 6*A164317(n) for n >= 5.
G.f.: (1 + 3*x + 9*x^2 + 26*x^3 + 77*x^4 + 30*x^5 + 18*x^6 - 42*x^7 - 45*x^8) / (1 - x^3 - x^4). - Colin Barker, Nov 02 2019

Extensions

a(0) = 1 prepended by Jeffrey Shallit, Dec 02 2019