cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329028 The least missing nonzero digit in the primorial base expansion of n.

This page as a plain text file.
%I A329028 #16 Mar 13 2024 01:51:00
%S A329028 1,2,2,2,1,3,2,2,2,2,3,3,1,3,3,3,1,3,1,2,2,2,1,4,1,2,2,2,1,3,2,2,2,2,
%T A329028 3,3,2,2,2,2,3,3,3,3,3,3,3,3,2,2,2,2,4,4,2,2,2,2,3,3,1,3,3,3,1,3,3,3,
%U A329028 3,3,3,3,1,3,3,3,1,3,1,4,4,4,1,4,1,3,3,3,1,3,1,2,2,2,1,4,2,2,2,2,4,4,1,4,4,4
%N A329028 The least missing nonzero digit in the primorial base expansion of n.
%H A329028 Antti Karttunen, <a href="/A329028/b329028.txt">Table of n, a(n) for n = 0..32786</a>
%H A329028 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>.
%F A329028 a(n) = A134193(A276086(n)) = A257993(A328835(n)).
%F A329028 a(A276086(n)) = A329030(n).
%e A329028 19 in primorial base (A049345) is written as "301". The least missing nonzero digit is 2, thus a(19) = 2.
%e A329028 809 in primorial base is written as "35421". The least missing nonzero digit is 6, thus a(809) = 6, and this is also the first position where 6 appears in this sequence.
%t A329028 a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Min[Complement[Range[Max[s] + 1], s]]]; a[0] = 1; Array[a, 100, 0] (* _Amiram Eldar_, Mar 13 2024 *)
%o A329028 (PARI) A329028(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=1,oo,if(!mapisdefined(m,k),return(k))); };
%Y A329028 Cf. A049345, A134193, A257993, A276086, A328835, A329027, A329030.
%Y A329028 Cf. A328840 (the positions of ones in this sequence).
%Y A329028 Cf. A257079 for analogous sequence.
%K A329028 nonn,base
%O A329028 0,2
%A A329028 _Antti Karttunen_, Nov 03 2019