cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329040 Number of distinct primorials in the greedy sum of primorials adding to A108951(n).

This page as a plain text file.
%I A329040 #14 Nov 11 2019 18:43:02
%S A329040 1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,1,2,1,1,1,1,1,2,2,1,2,1,1,2,1,2,1,1,
%T A329040 2,2,1,1,1,2,1,2,1,1,2,1,1,2,3,2,1,1,1,2,2,1,1,1,1,2,1,1,2,2,2,1,1,1,
%U A329040 1,2,1,3,1,1,3,1,2,1,1,2,3,1,1,2,2,1,1,1,1,2,2,1,1,1,2,2,1,3,2,3,1,1,1,1,3
%N A329040 Number of distinct primorials in the greedy sum of primorials adding to A108951(n).
%C A329040 The greedy sum is also the sum with the minimal number of primorials used in the primorial base representation.
%H A329040 Antti Karttunen, <a href="/A329040/b329040.txt">Table of n, a(n) for n = 1..65537</a>
%H A329040 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A329040 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H A329040 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F A329040 a(n) = A001221(A324886(n)).
%F A329040 a(n) = A267263(A108951(n)).
%F A329040 a(n) <= A324888(n).
%e A329040 For n = 18 = 2 * 3^2, A108951(18) = A034386(2) * A034386(3)^2 = 2 * 6^2 = 72 = 2*A002110(3) + 2*A002110(2) = 2*30 + 2*6, and because there occurs only two distinct primorials (30 and 6) in the sum, we have a(18) = 2.
%o A329040 (PARI)
%o A329040 A034386(n) = prod(i=1, primepi(n), prime(i));
%o A329040 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
%o A329040 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A329040 A324886(n) = A276086(A108951(n));
%o A329040 A329040(n) = omega(A324886(n));
%Y A329040 Cf. A001221, A002110, A034386, A108951, A267263, A276086, A324886, A324888, A329051 (positions of records), A329343.
%Y A329040 Cf. also A329045, A329046.
%K A329040 nonn
%O A329040 1,8
%A A329040 _Antti Karttunen_, Nov 11 2019