This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329044 #7 Nov 08 2019 18:16:26 %S A329044 1,2,3,4,5,9,7,6,15,25,11,81,13,49,15625,36,17,225,19,625,117649,121, %T A329044 23,135,60025,169,21,2401,29,21875,31,10,1771561,289,697540921,50625, %U A329044 37,361,4826809,35,41,77,43,14641,84035,529,47,375,161212051,3603000625,24137569,28561,53,441,2474329,5764801,47045881,841,59,42875,61,961 %N A329044 a(n) = A064989(A324886(n)). %H A329044 Antti Karttunen, <a href="/A329044/b329044.txt">Table of n, a(n) for n = 1..3000</a> %H A329044 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A329044 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A329044 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A329044 a(n) = A064989(A324886(n)). %F A329044 a(A000040(n)) = A000040(n). %o A329044 (PARI) %o A329044 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A329044 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A329044 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A329044 A324886(n) = A276086(A108951(n)); %o A329044 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A329044 A329044(n) = A064989(A324886(n)); %Y A329044 Cf. A034386, A064989, A108951, A276086, A324886, A329045. %K A329044 nonn %O A329044 1,2 %A A329044 _Antti Karttunen_, Nov 08 2019