This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329054 #9 Jan 09 2020 19:26:14 %S A329054 1,1,1,0,1,0,0,1,1,0,0,1,1,1,0,0,1,2,2,1,0,0,1,2,4,2,1,0,0,1,3,7,7,3, %T A329054 1,0,0,1,3,10,14,10,3,1,0,0,1,4,14,28,28,14,4,1,0,0,1,4,19,45,65,45, %U A329054 19,4,1,0,0,1,5,24,73,132,132,73,24,5,1,0 %N A329054 Array read by antidiagonals: T(n,m) is the number of unlabeled bicolored trees with n nodes of one color and m of the other. %C A329054 The two color classes are not interchangeable. Adjacent nodes cannot have the same color. %C A329054 Essentially the same data as given in the irregular triangle A122085, but including complete columns for n = 0 and m = 0 to give a regular array. %H A329054 Andrew Howroyd, <a href="/A329054/b329054.txt">Table of n, a(n) for n = 0..1325</a> %e A329054 Array begins: %e A329054 =================================================== %e A329054 n\m | 0 1 2 3 4 5 6 7 8 %e A329054 ----+---------------------------------------------- %e A329054 0 | 1, 1, 0, 0, 0, 0, 0, 0, 0, ... %e A329054 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A329054 2 | 0, 1, 1, 2, 2, 3, 3, 4, 4, ... %e A329054 3 | 0, 1, 2, 4, 7, 10, 14, 19, 24, ... %e A329054 4 | 0, 1, 2, 7, 14, 28, 45, 73, 105, ... %e A329054 5 | 0, 1, 3, 10, 28, 65, 132, 242, 412, ... %e A329054 6 | 0, 1, 3, 14, 45, 132, 316, 693, 1349, ... %e A329054 7 | 0, 1, 4, 19, 73, 242, 693, 1742, 3927, ... %e A329054 8 | 0, 1, 4, 24, 105, 412, 1349, 3927, 10079, ... %e A329054 ... %o A329054 (PARI) %o A329054 EulerXY(A)={my(j=serprec(A,x)); exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))} %o A329054 R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*EulerXY(A)); A}; %o A329054 P(n)={my(r1=R(n), r2=x*EulerXY(r1), s=r1+r2-r1*r2); Vec(1 + s)} %o A329054 { my(A=P(10)); for(n=0, #A\2, for(k=0, #A\2, print1(polcoef(A[n+k+1], k), ", ")); print) } %Y A329054 Main diagonal is A119857. %Y A329054 Antidiagonal sums are A122086. %Y A329054 The equivalent array for labeled nodes is A072590. %Y A329054 Cf. A122085, A329053. %K A329054 nonn,tabl %O A329054 0,18 %A A329054 _Andrew Howroyd_, Nov 02 2019