This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329059 #10 Nov 06 2019 10:26:32 %S A329059 1,3,1,15,9,3,91,78,48,16,612,680,600,375,125,4389,5985,6840,6156, %T A329059 3888,1296,32890,53130,74382,86779,79233,50421,16807,254475,475020, %U A329059 786240,1123200,1331200,1228800,786432,262144,2017356,4272048,8155728,13762791,19978245,23973894,22320522,14348907,4782969 %N A329059 3-parking triangle T(r, i, 3) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 3 and 0 <= i <= r. %C A329059 The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip). %H A329059 Stefano Spezia, <a href="/A329059/b329059.txt">First 151 rows of the triangle, flattened</a> %H A329059 Martha Yip, <a href="https://arxiv.org/abs/1910.10060">A Fuss-Catalan variation of the caracol flow polytope</a>, arXiv:1910.10060 [math.CO], 2019. %F A329059 T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i). %F A329059 T(r, 0, 3) = A006632(r + 1). %F A329059 T(r, r, 3) = A000272(r + 1). %e A329059 r/i| 0 1 2 3 4 %e A329059 ——————————————————————————————————————— %e A329059 0 | 1 %e A329059 1 | 3 1 %e A329059 2 | 15 9 3 %e A329059 3 | 91 78 48 16 %e A329059 4 | 612 680 600 375 125 %e A329059 ... %t A329059 T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,3],{r,0,8},{i,0,r}]] %Y A329059 Cf. A000108, A000272, A006632, A007318, A328978 (row sums), A329057, A329058, A329060. %K A329059 nonn,tabl %O A329059 0,2 %A A329059 _Stefano Spezia_, Nov 03 2019