This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329060 #15 Jun 19 2025 09:19:34 %S A329060 1,4,1,26,12,3,204,136,64,16,1771,1540,1050,500,125,16380,17550,15600, %T A329060 10800,5184,1296,158224,201376,220255,198940,139258,67228,16807, %U A329060 1577532,2324784,3015936,3351040,3063808,2162688,1048576,262144,16112057,26978328,40467492,53298648,59960979,55348596,39326634,19131876,4782969 %N A329060 4-parking triangle T(r, i, 4) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 4 and 0 <= i <= r. %C A329060 The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip). %H A329060 Stefano Spezia, <a href="/A329060/b329060.txt">First 151 rows of the triangle, flattened</a> %H A329060 Martha Yip, <a href="https://arxiv.org/abs/1910.10060">A Fuss-Catalan variation of the caracol flow polytope</a>, arXiv:1910.10060 [math.CO], 2019. %F A329060 T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i). %F A329060 T(r, 0, 4) = A118971(r). %F A329060 T(r, r, 4) = A000272(r + 1). %e A329060 r/i| 0 1 2 3 4 %e A329060 ————————————————————————————————————— %e A329060 0 | 1 %e A329060 1 | 4 1 %e A329060 2 | 26 12 3 %e A329060 3 | 204 136 64 16 %e A329060 4 | 1771 1540 1050 500 125 %e A329060 ... %t A329060 T[r_, i_, k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,4],{r,0,8},{i,0,r}]] %Y A329060 Cf. A000108, A000272, A007318, A118971, A329057, A329058, A329059, A329123 (row sums). %K A329060 nonn,tabl %O A329060 0,2 %A A329060 _Stefano Spezia_, Nov 03 2019