A329062 Numbers k that are not prime powers (i.e., not in A000961) such that A328925(k) > 1; numbers k such that if we write k = Product_{i=1..t} p_i^e_i , then t > 1, and lcm_{1<=i,j<=t, i!=j} ord(p_i,p_j^e_j) < A002322(k), where ord(a,r) is the multiplicative order of a modulo r, and A002322 is the Carmichael lambda (usually written as psi).
14, 34, 39, 46, 55, 62, 65, 68, 82, 86, 94, 95, 98, 111, 112, 117, 123, 124, 133, 136, 142, 145, 146, 153, 155, 158, 164, 172, 175, 178, 183, 194, 201, 203, 205, 206, 209, 218, 219, 221, 224, 226, 248, 253, 254, 259, 272, 274, 275, 287, 291, 292, 295, 299, 301, 302, 305, 309
Offset: 1
Keywords
Examples
Let ord(a,r) be the multiplicative order of a modulo r. For k = 175 = 5^2 * 7, b(175) = lcm(ord(7,5^2),ord(5,7)) = lcm(4,6) = 12, while psi(175) = lcm(20,6) = 60, so 175 is a term. For k = 410 = 2 * 5 * 41, b(410) = lcm(ord(5,2),ord(41,2),ord(2,5),ord(41,5),ord(2,41),ord(5,41)) = 20, while psi(410) = lcm(1,4,40) = 40, so 410 is a term.
Comments