A329065 Smallest m_0 such that A118106(m_0) = n; smallest m_0 such that if we write m_0 = Product_{i=1..t} p_i^e_i, then lcm_{1<=i,j<=t, i!=j} ord(p_i,p_j^e_j) = n, where ord(a,r) is the multiplicative order of a modulo r.
1, 6, 14, 10, 55, 18, 203, 34, 146, 22, 46, 26, 689, 86, 302, 51, 5759, 38, 955, 50, 98, 69, 94, 288, 505, 5462, 327, 58, 466, 77, 9305, 384, 5447, 309, 142, 74, 446, 2933, 158, 246, 3403, 129, 862, 115, 543, 141, 4702, 119, 5713, 453, 206, 106, 5671, 162, 605, 928, 687, 118
Offset: 1
Keywords
Examples
A118106(203) = 7; for any m < 203, A118106(m) is not equal to 7, so a(7) = 203.
Comments