cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329069 Expansion of Product_{k>=1} 1 / (1 + mu(k)^2 * x^k).

This page as a plain text file.
%I A329069 #16 Nov 05 2019 01:01:55
%S A329069 1,-1,0,-1,2,-2,1,-2,4,-3,2,-4,7,-6,4,-8,12,-10,9,-14,20,-18,16,-24,
%T A329069 32,-29,27,-38,49,-46,43,-59,74,-71,69,-90,112,-107,106,-136,164,-160,
%U A329069 159,-199,238,-232,234,-288,338,-333,338,-412,477,-473,485,-582,667,-666,686,-813,923
%N A329069 Expansion of Product_{k>=1} 1 / (1 + mu(k)^2 * x^k).
%C A329069 Convolution inverse of A087188.
%F A329069 G.f.: Product_{k>=1} 1 / (1 + x^A005117(k)).
%t A329069 nmax = 60; CoefficientList[Series[Product[1/(1 + MoebiusMu[k]^2 x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%t A329069 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) Boole[SquareFreeQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 60}]
%Y A329069 Cf. A005117, A008683, A048165, A073576, A087188, A292561.
%K A329069 sign
%O A329069 0,5
%A A329069 _Ilya Gutkovskiy_, Nov 04 2019