A329073 a(n) = (1/n)*Sum_{k=0..n-1} (40k+13)*(-1)^k*50^(n-1-k)*T_k(4,1)*T_k(1,-1)^2, where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k.
13, 219, 7858, 221525, 9253710, 375158958, 16882409364, 736344816813, 32964312771550, 1471835619627770, 66910145732699964, 3061043035494001682, 141458526138008430124, 6567714993530314856700, 306628434270114823521000, 14370411994543866356077725, 676259546148988495771751550
Offset: 1
Keywords
Examples
a(1) = 13 since (40*0+13)*(-1)^0*50^(1-1-0)*T_0(4,1)*T_0(1,-1)^2/1 = 13/1 = 13.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257-312. Also available from arXiv:1101.0600 [math.NT], 2011-2014.
Programs
-
Mathematica
T[b_,c_,0]=1;T[b_,c_,1]=b; T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n; a[n_]:=a[n]=Sum[(40k+13)(-1)^k*50^(n-1-k)*T[4,1,k]*T[1,-1,k]^2,{k,0,n-1}]/n; Table[a[n],{n,1,20}]
Comments