A329082 Decimal expansion of Sum_{k>=0} 1/(k^2-2), negated.
5, 5, 6, 8, 1, 0, 4, 0, 7, 7, 0, 0, 6, 2, 0, 0, 8, 2, 5, 5, 2, 9, 8, 1, 6, 0, 9, 1, 1, 2, 5, 9, 7, 3, 4, 7, 0, 9, 8, 7, 0, 9, 2, 7, 0, 2, 5, 7, 0, 4, 0, 8, 7, 8, 5, 5, 1, 0, 0, 1, 9, 8, 3, 4, 8, 6, 3, 2, 8, 1, 0, 3, 7, 4, 4, 1, 5, 7, 0, 0, 2, 4, 6, 1, 7, 4, 5, 6, 5, 7, 7
Offset: 0
Examples
-0.55681040770062008255...
Crossrefs
Programs
-
Mathematica
RealDigits[(1 + Sqrt[2]*Pi*Cot[Sqrt[2]*Pi])/4, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
-
PARI
default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(-2)
-
PARI
sumnumrat(1/(x^2-2), 0) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Equals (1 + (sqrt(-2)*Pi)*coth(sqrt(-2)*Pi))/(-4) = (1 + (sqrt(2)*Pi)*cot(sqrt(2)*Pi))/(-4).
Comments