A329087 Decimal expansion of Sum_{k>=1} 1/(k^2-5), negated.
6, 6, 6, 8, 3, 2, 5, 9, 5, 6, 6, 2, 7, 4, 4, 8, 5, 2, 9, 8, 2, 9, 6, 3, 3, 3, 9, 7, 6, 6, 9, 6, 8, 1, 5, 7, 5, 4, 3, 4, 3, 2, 5, 6, 6, 2, 3, 8, 0, 3, 9, 6, 4, 0, 4, 0, 5, 8, 3, 3, 4, 5, 8, 2, 7, 1, 4, 8, 6, 8, 3, 3, 7, 2, 8, 9, 9, 0, 6, 0, 3, 4, 3, 6, 8, 6, 0, 4, 9, 2, 1
Offset: 0
Examples
Sum_{k>=1} 1/(k^2-5) = -0.66683259566274485298...
Crossrefs
Programs
-
Mathematica
RealDigits[(1 - Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/10, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
-
PARI
default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(-5)
-
PARI
sumnumrat(1/(x^2-5), 1) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Sum_{k>=1} 1/(k^2-5) = (-1 + (sqrt(-5)*Pi)*coth(sqrt(-5)*Pi))/(-10) = (-1 + (sqrt(5)*Pi)*cot(sqrt(5)*Pi))/(-10).
Comments