A329088 Decimal expansion of Sum_{k>=1} 1/(k^2-3).
9, 7, 6, 6, 5, 0, 1, 8, 9, 9, 8, 6, 0, 9, 3, 6, 1, 7, 1, 0, 5, 8, 4, 9, 0, 5, 5, 1, 4, 1, 7, 1, 6, 2, 6, 2, 4, 4, 3, 0, 5, 9, 4, 1, 1, 4, 4, 5, 5, 1, 6, 9, 1, 9, 3, 8, 6, 9, 6, 6, 1, 7, 6, 6, 3, 5, 2, 1, 6, 5, 1, 8, 2, 9, 1, 7, 2, 9, 3, 7, 0, 2, 5, 9, 4, 8, 0, 4, 5, 2, 1
Offset: 0
Examples
Sum_{k>=1} 1/(k^2-3) = 0.97665018998609361710...
Crossrefs
Programs
-
Mathematica
RealDigits[(1 - Sqrt[3]*Pi*Cot[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
-
PARI
default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(-3)
-
PARI
sumnumrat(1/(x^2-3), 1) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Sum_{k>=1} 1/(k^2-3) = (-1 + (sqrt(-3)*Pi)*coth(sqrt(-3)*Pi))/(-6) = (-1 + (sqrt(3)*Pi)*cot(sqrt(3)*Pi))/(-6).
Comments