A329091 Decimal expansion of Sum_{k>=1} 1/(k^2+3).
7, 4, 0, 2, 6, 7, 0, 7, 6, 5, 8, 1, 8, 5, 0, 7, 8, 2, 5, 8, 0, 6, 0, 2, 9, 6, 4, 8, 2, 4, 8, 1, 1, 9, 7, 7, 9, 4, 3, 1, 0, 9, 3, 0, 2, 3, 8, 5, 4, 5, 1, 2, 4, 5, 6, 2, 7, 0, 3, 5, 4, 1, 8, 6, 2, 5, 3, 3, 4, 1, 8, 9, 8, 5, 1, 2, 3, 0, 1, 2, 6, 5, 5, 2, 5, 1, 4, 9, 1, 6, 1
Offset: 0
Examples
Sum_{k>=1} 1/(k^2+3) = 0.74026707658185078258...
Crossrefs
Programs
-
Mathematica
RealDigits[(-1 + Sqrt[3]*Pi*Coth[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
-
PARI
default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(3)
-
PARI
sumnumrat(1/(x^2+3), 1) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Equals (-1 + (sqrt(3)*Pi)*coth(sqrt(3)*Pi))/6 = (-1 + (sqrt(-3)*Pi)*cot(sqrt(-3)*Pi))/6.
Comments