cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329092 Decimal expansion of Sum_{k>=1} 1/(k^2+4).

This page as a plain text file.
%I A329092 #18 Jun 17 2023 03:13:29
%S A329092 6,6,0,4,0,3,6,4,1,3,2,1,1,1,5,1,1,4,1,9,3,0,4,3,8,2,4,9,2,6,4,4,3,6,
%T A329092 0,9,6,1,1,6,9,5,0,6,5,7,9,4,6,5,0,4,4,8,9,0,2,5,8,5,8,8,0,4,5,3,5,8,
%U A329092 0,8,3,1,1,4,9,4,5,5,2,0,6,2,5,2,8,4,5,3,1,7,8
%N A329092 Decimal expansion of Sum_{k>=1} 1/(k^2+4).
%C A329092 In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
%C A329092 F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
%C A329092 f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
%C A329092 This sequence gives f(4).
%C A329092 This and A329085 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329085.
%F A329092 Equals (-1 + (2*Pi)*coth(2*Pi))/8 = (-1 + (2*Pi*i)*cot(2*Pi*i))/8, i = sqrt(-1).
%F A329092 Equals Integral_{x=0..oo} sin(x)*cos(x)/(exp(x) - 1) dx. - _Amiram Eldar_, Aug 16 2020
%e A329092 Sum_{k>=1} 1/(k^2+4) = 0.66040364132111511419...
%t A329092 RealDigits[(-1 + 2*Pi*Coth[2*Pi])/8, 10, 120][[1]] (* _Amiram Eldar_, Jun 17 2023 *)
%o A329092 (PARI) default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(4)
%o A329092 (PARI) sumnumrat(1/(x^2+4), 1) \\ _Charles R Greathouse IV_, Jan 20 2022
%Y A329092 Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
%Y A329092 Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), this sequence (f(4)), A329093 (f(5)).
%K A329092 nonn,cons
%O A329092 0,1
%A A329092 _Jianing Song_, Nov 04 2019