A329100 Composite palindromes whose divisors > 1 are all nontrivial palindromes (i.e., palindromes with at least two digits).
121, 1111, 1331, 1441, 1661, 1991, 3443, 3883, 7997, 10201, 12221, 13231, 14641, 15251, 15851, 18281, 19291, 31613, 35653, 37673, 37873, 38683, 112211, 113311, 115511, 116611, 124421, 125521, 134431, 136631, 139931, 145541, 146641, 157751, 167761, 169961, 176671
Offset: 1
Examples
For k = 1331, its divisors > 1 are 11, 121 and 1331, all of which are palindromes with at least two digits, so 1331 is a term. For k = 167761, its divisors > 1 are 11, 101, 151, 1111, 1661, 15251 and 167761, all of which are palindromes with at least two digits, so 167761 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
aQ[n_] := CompositeQ[n] && AllTrue[Rest @ Divisors[n], # > 10 && PalindromeQ @ IntegerDigits[#] &]; Select[Range[200000], aQ] (* Amiram Eldar, Nov 06 2019 *)
-
PARI
isA329100(n) = if((n>1) && !isprime(n) && gcd(n,210)==1, {d = divisors(n); rd = vector(#d, i, subst(Polrev(digits(d[i])), x, 10)); (d == rd); }, 0) \\ Jianing Song, Nov 06 2019, based on the program of A062687
Extensions
More terms from Jianing Song, Nov 06 2019
Comments