This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329101 #24 Nov 08 2019 09:46:49 %S A329101 0,2,1,3,6,10,8,9,4,11,5,7,12,14,13,15,18,26,22,24,34,42,38,40,25,41, %T A329101 27,30,32,43,33,35,16,36,17,19,37,46,39,44,20,45,21,23,28,47,29,31,48, %U A329101 50,49,51,54,58,56,57,52,59,53,55,60,62,61,63,66,74,70,72 %N A329101 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the number of 1's in the base 4 expansion of n equals the number of 2's in the base 4 expansion of a(n). %C A329101 This sequence is a permutation of the nonnegative integers with inverse A329180. %C A329101 Apparently, fixed points correspond to A001196. %C A329101 The sequence has fractal features; for any k >= 0, the set of points { (n, a(n)), n = 0..4^k-1 } is symmetrical relative to the line of equation y + x = 4^k - 1 (see scatterplots in Links section). %H A329101 Rémy Sigrist, <a href="/A329101/b329101.txt">Table of n, a(n) for n = 0..4095</a> %H A329101 Rémy Sigrist, <a href="/A329101/a329101_1.gp.txt">PARI program for A329101</a> %H A329101 Rémy Sigrist, <a href="/A329101/a329101.png">Scatterplot of the sequence for n = 0..4^3-1</a> %H A329101 Rémy Sigrist, <a href="/A329101/a329101_1.png">Scatterplot of the sequence for n = 0..4^10-1</a> %H A329101 Rémy Sigrist, <a href="/A329101/a329101_2.png">Colored scatterplot of the sequence for n = 0..4^10-1</a> (where the color is function of A160381(n)) %H A329101 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A329101 A160381(n) = A160382(a(n)). %e A329101 The first terms, alongside the base 4 representations of n and of a(n), are: %e A329101 n a(n) qua(n) qua(a(n)) %e A329101 -- ---- ------ --------- %e A329101 0 0 0 0 %e A329101 1 2 1 2 %e A329101 2 1 2 1 %e A329101 3 3 3 3 %e A329101 4 6 10 12 %e A329101 5 10 11 22 %e A329101 6 8 12 20 %e A329101 7 9 13 21 %e A329101 8 4 20 10 %e A329101 9 11 21 23 %e A329101 10 5 22 11 %e A329101 11 7 23 13 %e A329101 12 12 30 30 %e A329101 13 14 31 32 %e A329101 14 13 32 31 %e A329101 15 15 33 33 %o A329101 (PARI) See Links section. %Y A329101 Cf. A001196, A160381, A160382, A329180. %K A329101 nonn,base %O A329101 0,2 %A A329101 _Rémy Sigrist_, Nov 07 2019