This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329116 #84 Aug 05 2022 07:45:55 %S A329116 0,1,0,-1,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-4,-3,-2,-1,0,1,2,3,4,5,4,3,2, %T A329116 1,0,-1,-2,-3,-4,-5,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,6,5,4,3,2,1,0, %U A329116 -1,-2,-3,-4,-5,-6,-7,-8 %N A329116 Successively count to (-1)^(n+1)*n (n = 0, 1, 2, ... ). %C A329116 Also x-coordinates of a point moving in counterclockwise triangular spiral (A329972 gives the y-coordinates). %H A329116 Rémy Sigrist, <a href="/A329116/b329116.txt">Table of n, a(n) for n = 0..10000</a> %H A329116 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A329116 a(n) = (-1)^t * (t^2 - t - n) where t=ceiling(sqrt(n)). %F A329116 a(n) = (-1)^t * floor(t^2 - sqrt(n) - n) where t=ceiling(sqrt(n)). %F A329116 A053615(n) = abs(a(n)). %F A329116 abs(A196199(n)) = abs(a(n)). %F A329116 A255175(n) = a(n+1). %e A329116 y %e A329116 | %e A329116 4 | 56 %e A329116 | \ %e A329116 | \ %e A329116 | \ %e A329116 3 | 30 55 %e A329116 | / \ \ %e A329116 | / \ \ %e A329116 | / \ \ %e A329116 2 | 31 12 29 54 %e A329116 | / / \ \ \ %e A329116 | / / \ \ \ %e A329116 | / / \ \ \ %e A329116 1 | 32 13 2 11 28 53 %e A329116 | / / / \ \ \ \ %e A329116 | / / / \ \ \ \ %e A329116 | / / / \ \ \ \ %e A329116 0 | 33 14 3 0---1 10 27 52 %e A329116 | / / / \ \ \ %e A329116 | / / / \ \ \ %e A329116 | / / / \ \ \ %e A329116 -1 | 34 15 4---5---6---7---8---9 26 51 %e A329116 | / / \ \ %e A329116 | / / \ \ %e A329116 | / / \ \ %e A329116 -2 | 35 16--17--18--19--20--21--22--23--24--25 50 %e A329116 | / \ %e A329116 | / \ %e A329116 | / \ %e A329116 -3 | 36--37--38--39--40--41--42--43--44--45--46--47--48--49 %e A329116 | %e A329116 +-------------------------------------------------------- %e A329116 x: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 %e A329116 We count as follows. Start at n=0 with 0. %e A329116 Next step is to count to 1: so we have 0, 1. %e A329116 Next step is to count to -2, so we have 0, 1, 0, -1, -2. %e A329116 Next we have to go to +3, so we have 0, 1, 0, -1, -2, -1, 0, 1, 2, 3. %e A329116 And so on. %t A329116 a[n_] := Table[(-1)^(# + 1)*(-#^2 + # + k) &[Ceiling@ Sqrt@ k], {k, 0, n}]; a[64] %o A329116 (Python) %o A329116 from math import isqrt %o A329116 def A329116(n): return ((t:=1+isqrt(n-1))*(t-1)-n)*(-1 if t&1 else 1) if n else 0 # _Chai Wah Wu_, Aug 04 2022 %Y A329116 Cf. A053615, A196199, A339265 (first differences). Essentially the same as A255175. %K A329116 sign,easy,look %O A329116 0,5 %A A329116 _Mikk Heidemaa_, Nov 13 2019