A329119 Orders of the finite groups SL_2(K) when K is a finite field with q = A246655(n) elements.
6, 24, 60, 120, 336, 504, 720, 1320, 2184, 4080, 4896, 6840, 12144, 15600, 19656, 24360, 29760, 32736, 50616, 68880, 79464, 103776, 117600, 148824, 205320, 226920, 262080, 300696, 357840, 388944, 492960, 531360, 571704, 704880, 912576, 1030200, 1092624, 1224936, 1294920
Offset: 1
Keywords
Examples
a(4) = 120 because A246655(4) = 5, and 5*(5^2-1) = 120.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Groupprops, Projective general linear group of degree two
- Groupprops, Special linear group of degree two
Crossrefs
Programs
-
Maple
N:= 200: P:= select(isprime, {2,seq(i,i=3..N,2)}): PP:= map(proc(p) local i; seq(p^i,i=1..floor(log[p](N))) end proc, P): map(t -> t*(t^2-1), sort(convert(PP,list))); # Robert Israel, Nov 13 2019
-
Mathematica
p = Select[Range[200], PrimePowerQ]; (p-1) p (p+1) (* Jean-François Alcover, Aug 22 2020 *)
-
PARI
[(p+1)*p*(p-1) | p <- [1..200], isprimepower(p)]
Comments