This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329120 #9 Dec 07 2019 00:50:47 %S A329120 1,1,-1,1,-5,4,1,-21,72,-52,1,-85,1020,-3016,2080,1,-341,13600, %T A329120 -133900,372320,-251680,1,-1365,178164,-5532800,50406720,-136662240, %U A329120 91611520,1,-5461,2321592,-223628132,6320525120,-55844268480,149876446720,-100131391360 %N A329120 The q-analog T(q; n,k) of the triangle A163626 for 0 <= k <= n, for q=3. %C A329120 For more information see A308326. There you'll find formulas for the general case depending on some fixed integer q. %e A329120 The triangle T(3; n,k) starts: %e A329120 n\ k: 0 1 2 3 4 5 6 %e A329120 ========================================================== %e A329120 0: 1 %e A329120 1: 1 -1 %e A329120 2: 1 -5 4 %e A329120 3: 1 -21 72 -52 %e A329120 4: 1 -85 1020 -3016 2080 %e A329120 5: 1 -341 13600 -133900 372320 -251680 %e A329120 6: 1 -1365 178164 -5532800 50406720 -136662240 91611520 %e A329120 etc. %o A329120 (PARI) { T(n,k) = if( k<0 || k>n, 0, if( k==0, 1, (3^(k+1) - 1)/2 * T(n-1,k) - (3^k - 1)/2 * T(n-1,k-1)))}; %o A329120 for(n=0, 7, for(k=0, n, print1(T(n,k), ", "))) %Y A329120 Cf. A163626, A308326. %K A329120 sign,tabl %O A329120 0,5 %A A329120 _Werner Schulte_, Nov 05 2019