This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329132 #5 Nov 09 2019 16:25:51 %S A329132 4,8,15,16,32,55,64,90,105,119,128,225,253,256,403,512,540,550,697, %T A329132 893,935,1024,1155,1350,1357,1666,1943,2048,2263,3025,3071,3150,3240, %U A329132 3375,3451,3927,3977,4096,4429,5123,5500,5566,6731,7735,8083,8100,8192,9089 %N A329132 Numbers whose augmented differences of prime indices are a periodic sequence. %C A329132 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A329132 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A329132 A sequence is periodic if its cyclic rotations are not all different. %e A329132 The sequence of terms together with their augmented differences of prime indices begins: %e A329132 4: (1,1) %e A329132 8: (1,1,1) %e A329132 15: (2,2) %e A329132 16: (1,1,1,1) %e A329132 32: (1,1,1,1,1) %e A329132 55: (3,3) %e A329132 64: (1,1,1,1,1,1) %e A329132 90: (2,1,2,1) %e A329132 105: (2,2,2) %e A329132 119: (4,4) %e A329132 128: (1,1,1,1,1,1,1) %e A329132 225: (1,2,1,2) %e A329132 253: (5,5) %e A329132 256: (1,1,1,1,1,1,1,1) %e A329132 403: (6,6) %e A329132 512: (1,1,1,1,1,1,1,1,1) %e A329132 540: (2,1,1,2,1,1) %e A329132 550: (3,1,3,1) %e A329132 697: (7,7) %e A329132 893: (8,8) %t A329132 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329132 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329132 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A329132 Select[Range[100],!aperQ[aug[primeMS[#]//Reverse]]&] %Y A329132 Complement of A329133. %Y A329132 These are the Heinz numbers of the partitions counted by A329143. %Y A329132 Periodic binary words are A152061. %Y A329132 Periodic compositions are A178472. %Y A329132 Numbers whose binary expansion is periodic are A121016. %Y A329132 Numbers whose prime signature is periodic are A329140. %Y A329132 Numbers whose differences of prime indices are periodic are A329134. %Y A329132 Cf. A000961, A027375, A056239, A112798, A325356, A325389, A325394, A328594, A329135, A329136, A329139. %K A329132 nonn %O A329132 1,1 %A A329132 _Gus Wiseman_, Nov 06 2019