This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329133 #6 Nov 09 2019 16:25:58 %S A329133 1,2,3,5,6,7,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29, %T A329133 30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, %U A329133 54,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74 %N A329133 Numbers whose augmented differences of prime indices are an aperiodic sequence. %C A329133 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A329133 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A329133 A finite sequence is aperiodic if its cyclic rotations are all different. %e A329133 The sequence of terms together with their augmented differences of prime indices begins: %e A329133 1: () %e A329133 2: (1) %e A329133 3: (2) %e A329133 5: (3) %e A329133 6: (2,1) %e A329133 7: (4) %e A329133 9: (1,2) %e A329133 10: (3,1) %e A329133 11: (5) %e A329133 12: (2,1,1) %e A329133 13: (6) %e A329133 14: (4,1) %e A329133 17: (7) %e A329133 18: (1,2,1) %e A329133 19: (8) %e A329133 20: (3,1,1) %e A329133 21: (3,2) %e A329133 22: (5,1) %e A329133 23: (9) %e A329133 24: (2,1,1,1) %t A329133 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329133 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329133 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A329133 Select[Range[100],aperQ[aug[primeMS[#]//Reverse]]&] %Y A329133 Complement of A329132. %Y A329133 These are the Heinz numbers of the partitions counted by A329136. %Y A329133 Aperiodic binary words are A027375. %Y A329133 Aperiodic compositions are A000740. %Y A329133 Numbers whose binary expansion is aperiodic are A328594. %Y A329133 Numbers whose prime signature is aperiodic are A329139. %Y A329133 Numbers whose differences of prime indices are aperiodic are A329135. %Y A329133 Cf. A056239, A112798, A121016, A124010, A152061, A246029, A325351, A325389, A329134, A329140. %K A329133 nonn %O A329133 1,2 %A A329133 _Gus Wiseman_, Nov 09 2019