cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329135 Numbers whose differences of prime indices are an aperiodic word.

This page as a plain text file.
%I A329135 #5 Nov 09 2019 16:26:13
%S A329135 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,28,
%T A329135 29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,
%U A329135 54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73
%N A329135 Numbers whose differences of prime indices are an aperiodic word.
%C A329135 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A329135 A sequence is aperiodic if its cyclic rotations are all different.
%e A329135 The sequence of terms together with their differences of prime indices begins:
%e A329135     1: ()
%e A329135     2: ()
%e A329135     3: ()
%e A329135     4: (0)
%e A329135     5: ()
%e A329135     6: (1)
%e A329135     7: ()
%e A329135     9: (0)
%e A329135    10: (2)
%e A329135    11: ()
%e A329135    12: (0,1)
%e A329135    13: ()
%e A329135    14: (3)
%e A329135    15: (1)
%e A329135    17: ()
%e A329135    18: (1,0)
%e A329135    19: ()
%e A329135    20: (0,2)
%e A329135    21: (2)
%e A329135    22: (4)
%t A329135 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A329135 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
%t A329135 Select[Range[100],aperQ[Differences[primeMS[#]]]&]
%Y A329135 Complement of A329134.
%Y A329135 These are the Heinz numbers of the partitions counted by A329137.
%Y A329135 Aperiodic compositions are A000740.
%Y A329135 Aperiodic binary words are A027375.
%Y A329135 Numbers whose binary expansion is aperiodic are A328594.
%Y A329135 Numbers whose prime signature is aperiodic are A329139.
%Y A329135 Cf. A056239, A112798, A124010, A152061, A329133, A329136, A329140.
%K A329135 nonn
%O A329135 1,2
%A A329135 _Gus Wiseman_, Nov 09 2019