This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329135 #5 Nov 09 2019 16:26:13 %S A329135 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,28, %T A329135 29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, %U A329135 54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73 %N A329135 Numbers whose differences of prime indices are an aperiodic word. %C A329135 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A329135 A sequence is aperiodic if its cyclic rotations are all different. %e A329135 The sequence of terms together with their differences of prime indices begins: %e A329135 1: () %e A329135 2: () %e A329135 3: () %e A329135 4: (0) %e A329135 5: () %e A329135 6: (1) %e A329135 7: () %e A329135 9: (0) %e A329135 10: (2) %e A329135 11: () %e A329135 12: (0,1) %e A329135 13: () %e A329135 14: (3) %e A329135 15: (1) %e A329135 17: () %e A329135 18: (1,0) %e A329135 19: () %e A329135 20: (0,2) %e A329135 21: (2) %e A329135 22: (4) %t A329135 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A329135 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329135 Select[Range[100],aperQ[Differences[primeMS[#]]]&] %Y A329135 Complement of A329134. %Y A329135 These are the Heinz numbers of the partitions counted by A329137. %Y A329135 Aperiodic compositions are A000740. %Y A329135 Aperiodic binary words are A027375. %Y A329135 Numbers whose binary expansion is aperiodic are A328594. %Y A329135 Numbers whose prime signature is aperiodic are A329139. %Y A329135 Cf. A056239, A112798, A124010, A152061, A329133, A329136, A329140. %K A329135 nonn %O A329135 1,2 %A A329135 _Gus Wiseman_, Nov 09 2019