cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329136 Number of integer partitions of n whose augmented differences are an aperiodic word.

This page as a plain text file.
%I A329136 #8 Nov 14 2019 12:58:06
%S A329136 1,1,1,2,4,5,10,14,19,28,40,53,75,99,131,172,226,294,380,488,617,787,
%T A329136 996,1250,1565,1953,2425,3003,3705,4559,5589,6836,8329,10132,12292,
%U A329136 14871,17950,21629,25988,31169,37306,44569,53139,63247,75133,89111,105515,124737
%N A329136 Number of integer partitions of n whose augmented differences are an aperiodic word.
%C A329136 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A329136 A sequence is aperiodic if its cyclic rotations are all different.
%F A329136 a(n) + A329143(n) = A000041(n).
%e A329136 The a(1) = 1 through a(7) = 14 partitions:
%e A329136   (1)  (2)  (3)    (4)      (5)        (6)          (7)
%e A329136             (2,1)  (2,2)    (4,1)      (3,3)        (4,3)
%e A329136                    (3,1)    (2,2,1)    (4,2)        (5,2)
%e A329136                    (2,1,1)  (3,1,1)    (5,1)        (6,1)
%e A329136                             (2,1,1,1)  (2,2,2)      (3,2,2)
%e A329136                                        (3,2,1)      (3,3,1)
%e A329136                                        (4,1,1)      (4,2,1)
%e A329136                                        (2,2,1,1)    (5,1,1)
%e A329136                                        (3,1,1,1)    (2,2,2,1)
%e A329136                                        (2,1,1,1,1)  (3,2,1,1)
%e A329136                                                     (4,1,1,1)
%e A329136                                                     (2,2,1,1,1)
%e A329136                                                     (3,1,1,1,1)
%e A329136                                                     (2,1,1,1,1,1)
%e A329136 With augmented differences:
%e A329136   (1)  (2)  (3)    (4)      (5)        (6)          (7)
%e A329136             (2,1)  (1,2)    (4,1)      (1,3)        (2,3)
%e A329136                    (3,1)    (1,2,1)    (3,2)        (4,2)
%e A329136                    (2,1,1)  (3,1,1)    (5,1)        (6,1)
%e A329136                             (2,1,1,1)  (1,1,2)      (1,3,1)
%e A329136                                        (2,2,1)      (2,1,2)
%e A329136                                        (4,1,1)      (3,2,1)
%e A329136                                        (1,2,1,1)    (5,1,1)
%e A329136                                        (3,1,1,1)    (1,1,2,1)
%e A329136                                        (2,1,1,1,1)  (2,2,1,1)
%e A329136                                                     (4,1,1,1)
%e A329136                                                     (1,2,1,1,1)
%e A329136                                                     (3,1,1,1,1)
%e A329136                                                     (2,1,1,1,1,1)
%t A329136 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
%t A329136 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A329136 Table[Length[Select[IntegerPartitions[n],aperQ[aug[#]]&]],{n,0,30}]
%Y A329136 The Heinz numbers of these partitions are given by A329133.
%Y A329136 The periodic version is A329143.
%Y A329136 The non-augmented version is A329137.
%Y A329136 Aperiodic binary words are A027375.
%Y A329136 Aperiodic compositions are A000740.
%Y A329136 Numbers whose binary expansion is aperiodic are A328594.
%Y A329136 Numbers whose differences of prime indices are aperiodic are A329135.
%Y A329136 Numbers whose prime signature is aperiodic are A329139.
%Y A329136 Cf. A152061, A325351, A325356, A329132, A329134, A329139, A329140.
%K A329136 nonn
%O A329136 0,4
%A A329136 _Gus Wiseman_, Nov 09 2019