This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329136 #8 Nov 14 2019 12:58:06 %S A329136 1,1,1,2,4,5,10,14,19,28,40,53,75,99,131,172,226,294,380,488,617,787, %T A329136 996,1250,1565,1953,2425,3003,3705,4559,5589,6836,8329,10132,12292, %U A329136 14871,17950,21629,25988,31169,37306,44569,53139,63247,75133,89111,105515,124737 %N A329136 Number of integer partitions of n whose augmented differences are an aperiodic word. %C A329136 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A329136 A sequence is aperiodic if its cyclic rotations are all different. %F A329136 a(n) + A329143(n) = A000041(n). %e A329136 The a(1) = 1 through a(7) = 14 partitions: %e A329136 (1) (2) (3) (4) (5) (6) (7) %e A329136 (2,1) (2,2) (4,1) (3,3) (4,3) %e A329136 (3,1) (2,2,1) (4,2) (5,2) %e A329136 (2,1,1) (3,1,1) (5,1) (6,1) %e A329136 (2,1,1,1) (2,2,2) (3,2,2) %e A329136 (3,2,1) (3,3,1) %e A329136 (4,1,1) (4,2,1) %e A329136 (2,2,1,1) (5,1,1) %e A329136 (3,1,1,1) (2,2,2,1) %e A329136 (2,1,1,1,1) (3,2,1,1) %e A329136 (4,1,1,1) %e A329136 (2,2,1,1,1) %e A329136 (3,1,1,1,1) %e A329136 (2,1,1,1,1,1) %e A329136 With augmented differences: %e A329136 (1) (2) (3) (4) (5) (6) (7) %e A329136 (2,1) (1,2) (4,1) (1,3) (2,3) %e A329136 (3,1) (1,2,1) (3,2) (4,2) %e A329136 (2,1,1) (3,1,1) (5,1) (6,1) %e A329136 (2,1,1,1) (1,1,2) (1,3,1) %e A329136 (2,2,1) (2,1,2) %e A329136 (4,1,1) (3,2,1) %e A329136 (1,2,1,1) (5,1,1) %e A329136 (3,1,1,1) (1,1,2,1) %e A329136 (2,1,1,1,1) (2,2,1,1) %e A329136 (4,1,1,1) %e A329136 (1,2,1,1,1) %e A329136 (3,1,1,1,1) %e A329136 (2,1,1,1,1,1) %t A329136 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329136 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A329136 Table[Length[Select[IntegerPartitions[n],aperQ[aug[#]]&]],{n,0,30}] %Y A329136 The Heinz numbers of these partitions are given by A329133. %Y A329136 The periodic version is A329143. %Y A329136 The non-augmented version is A329137. %Y A329136 Aperiodic binary words are A027375. %Y A329136 Aperiodic compositions are A000740. %Y A329136 Numbers whose binary expansion is aperiodic are A328594. %Y A329136 Numbers whose differences of prime indices are aperiodic are A329135. %Y A329136 Numbers whose prime signature is aperiodic are A329139. %Y A329136 Cf. A152061, A325351, A325356, A329132, A329134, A329139, A329140. %K A329136 nonn %O A329136 0,4 %A A329136 _Gus Wiseman_, Nov 09 2019