This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329137 #6 Nov 09 2019 16:26:27 %S A329137 1,1,2,2,4,6,8,14,20,25,39,54,69,99,130,167,224,292,373,483,620,773, %T A329137 993,1246,1554,1946,2421,2987,3700,4548,5575,6821,8330,10101,12287, %U A329137 14852,17935,21599,25986,31132,37295,44539,53112,63212,75123,89055,105503,124682 %N A329137 Number of integer partitions of n whose differences are an aperiodic word. %C A329137 A sequence is aperiodic if its cyclic rotations are all different. %F A329137 a(n) + A329144(n) = A000041(n). %e A329137 The a(1) = 1 through a(7) = 14 partitions: %e A329137 (1) (2) (3) (4) (5) (6) (7) %e A329137 (1,1) (2,1) (2,2) (3,2) (3,3) (4,3) %e A329137 (3,1) (4,1) (4,2) (5,2) %e A329137 (2,1,1) (2,2,1) (5,1) (6,1) %e A329137 (3,1,1) (4,1,1) (3,2,2) %e A329137 (2,1,1,1) (2,2,1,1) (3,3,1) %e A329137 (3,1,1,1) (4,2,1) %e A329137 (2,1,1,1,1) (5,1,1) %e A329137 (2,2,2,1) %e A329137 (3,2,1,1) %e A329137 (4,1,1,1) %e A329137 (2,2,1,1,1) %e A329137 (3,1,1,1,1) %e A329137 (2,1,1,1,1,1) %e A329137 With differences: %e A329137 () () () () () () () %e A329137 (0) (1) (0) (1) (0) (1) %e A329137 (2) (3) (2) (3) %e A329137 (1,0) (0,1) (4) (5) %e A329137 (2,0) (3,0) (0,2) %e A329137 (1,0,0) (0,1,0) (1,0) %e A329137 (2,0,0) (2,1) %e A329137 (1,0,0,0) (4,0) %e A329137 (0,0,1) %e A329137 (1,1,0) %e A329137 (3,0,0) %e A329137 (0,1,0,0) %e A329137 (2,0,0,0) %e A329137 (1,0,0,0,0) %t A329137 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329137 Table[Length[Select[IntegerPartitions[n],aperQ[Differences[#]]&]],{n,0,30}] %Y A329137 The Heinz numbers of these partitions are given by A329135. %Y A329137 The periodic version is A329144. %Y A329137 The augmented version is A329136. %Y A329137 Aperiodic binary words are A027375. %Y A329137 Aperiodic compositions are A000740. %Y A329137 Numbers whose binary expansion is aperiodic are A328594. %Y A329137 Numbers whose prime signature is aperiodic are A329139. %Y A329137 Cf. A152061, A325356, A329132, A329133, A329134, A329140. %K A329137 nonn %O A329137 0,3 %A A329137 _Gus Wiseman_, Nov 09 2019