cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329137 Number of integer partitions of n whose differences are an aperiodic word.

This page as a plain text file.
%I A329137 #6 Nov 09 2019 16:26:27
%S A329137 1,1,2,2,4,6,8,14,20,25,39,54,69,99,130,167,224,292,373,483,620,773,
%T A329137 993,1246,1554,1946,2421,2987,3700,4548,5575,6821,8330,10101,12287,
%U A329137 14852,17935,21599,25986,31132,37295,44539,53112,63212,75123,89055,105503,124682
%N A329137 Number of integer partitions of n whose differences are an aperiodic word.
%C A329137 A sequence is aperiodic if its cyclic rotations are all different.
%F A329137 a(n) + A329144(n) = A000041(n).
%e A329137 The a(1) = 1 through a(7) = 14 partitions:
%e A329137   (1)  (2)    (3)    (4)      (5)        (6)          (7)
%e A329137        (1,1)  (2,1)  (2,2)    (3,2)      (3,3)        (4,3)
%e A329137                      (3,1)    (4,1)      (4,2)        (5,2)
%e A329137                      (2,1,1)  (2,2,1)    (5,1)        (6,1)
%e A329137                               (3,1,1)    (4,1,1)      (3,2,2)
%e A329137                               (2,1,1,1)  (2,2,1,1)    (3,3,1)
%e A329137                                          (3,1,1,1)    (4,2,1)
%e A329137                                          (2,1,1,1,1)  (5,1,1)
%e A329137                                                       (2,2,2,1)
%e A329137                                                       (3,2,1,1)
%e A329137                                                       (4,1,1,1)
%e A329137                                                       (2,2,1,1,1)
%e A329137                                                       (3,1,1,1,1)
%e A329137                                                       (2,1,1,1,1,1)
%e A329137 With differences:
%e A329137   ()  ()   ()   ()     ()       ()         ()
%e A329137       (0)  (1)  (0)    (1)      (0)        (1)
%e A329137                 (2)    (3)      (2)        (3)
%e A329137                 (1,0)  (0,1)    (4)        (5)
%e A329137                        (2,0)    (3,0)      (0,2)
%e A329137                        (1,0,0)  (0,1,0)    (1,0)
%e A329137                                 (2,0,0)    (2,1)
%e A329137                                 (1,0,0,0)  (4,0)
%e A329137                                            (0,0,1)
%e A329137                                            (1,1,0)
%e A329137                                            (3,0,0)
%e A329137                                            (0,1,0,0)
%e A329137                                            (2,0,0,0)
%e A329137                                            (1,0,0,0,0)
%t A329137 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
%t A329137 Table[Length[Select[IntegerPartitions[n],aperQ[Differences[#]]&]],{n,0,30}]
%Y A329137 The Heinz numbers of these partitions are given by A329135.
%Y A329137 The periodic version is A329144.
%Y A329137 The augmented version is A329136.
%Y A329137 Aperiodic binary words are A027375.
%Y A329137 Aperiodic compositions are A000740.
%Y A329137 Numbers whose binary expansion is aperiodic are A328594.
%Y A329137 Numbers whose prime signature is aperiodic are A329139.
%Y A329137 Cf. A152061, A325356, A329132, A329133, A329134, A329140.
%K A329137 nonn
%O A329137 0,3
%A A329137 _Gus Wiseman_, Nov 09 2019