This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329139 #4 Nov 10 2019 20:29:26 %S A329139 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,37, %T A329139 40,41,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,67,68,71,72,73, %U A329139 75,76,79,80,81,83,84,88,89,90,92,96,97,98,99,101,103,104 %N A329139 Numbers whose prime signature is an aperiodic word. %C A329139 First differs from A319161 in having 1260 = 2*2 * 3^2 * 5^1 * 7^1. First differs from A325370 in having 420 = 2^2 * 3^1 * 5^1 * 7^1. %C A329139 A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization. %C A329139 A sequence is aperiodic if its cyclic rotations are all different. %e A329139 The sequence of terms together with their prime signatures begins: %e A329139 1: () %e A329139 2: (1) %e A329139 3: (1) %e A329139 4: (2) %e A329139 5: (1) %e A329139 7: (1) %e A329139 8: (3) %e A329139 9: (2) %e A329139 11: (1) %e A329139 12: (2,1) %e A329139 13: (1) %e A329139 16: (4) %e A329139 17: (1) %e A329139 18: (1,2) %e A329139 19: (1) %e A329139 20: (2,1) %e A329139 23: (1) %e A329139 24: (3,1) %e A329139 25: (2) %e A329139 27: (3) %t A329139 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329139 Select[Range[100],aperQ[Last/@FactorInteger[#]]&] %Y A329139 Complement of A329140. %Y A329139 Aperiodic compositions are A000740. %Y A329139 Aperiodic binary words are A027375. %Y A329139 Numbers whose binary expansion is aperiodic are A328594. %Y A329139 Numbers whose prime signature is a Lyndon word are A329131. %Y A329139 Numbers whose prime signature is a necklace are A329138. %Y A329139 Cf. A025487, A097318, A112798, A124010, A178472, A181819, A304678, A329133, A329135, A329136, A329137, A329142. %K A329139 nonn %O A329139 1,2 %A A329139 _Gus Wiseman_, Nov 09 2019