This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329141 #4 Nov 10 2019 20:29:11 %S A329141 0,0,0,0,0,1,4,11,28,60,131,263,530,1029,2009,3853,7414,14152,27105, %T A329141 51755,99069,189558,363468,697302,1340220,2578362,4968001,9582682, %U A329141 18508226,35784670,69266825,134207336,260290846,505274108,981691926 %N A329141 Number of Lyndon compositions of n that are not weakly increasing. %C A329141 A Lyndon composition of n is a finite sequence of positive integers summing to n that is lexicographically strictly less than all of its cyclic rotations. %F A329141 a(n) = A059966(n) - A167934(n). %e A329141 The a(6) = 1 through a(8) = 11 compositions: %e A329141 (132) (142) (143) %e A329141 (1132) (152) %e A329141 (1213) (1142) %e A329141 (11212) (1214) %e A329141 (1232) %e A329141 (1322) %e A329141 (11132) %e A329141 (11213) %e A329141 (11312) %e A329141 (12122) %e A329141 (111212) %t A329141 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A329141 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329141 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!OrderedQ[#]&&neckQ[#]&&aperQ[#]&]],{n,10}] %Y A329141 Lyndon compositions are A059966. %Y A329141 Lyndon compositions that are weakly increasing are A167934. %Y A329141 Binary Lyndon words are A001037. %Y A329141 Necklace compositions are A008965. %Y A329141 Cf. A000031, A000740, A178472, A318731, A328596, A329131, A329145. %K A329141 nonn %O A329141 1,7 %A A329141 _Gus Wiseman_, Nov 10 2019