cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329143 Number of integer partitions of n whose augmented differences are a periodic word.

This page as a plain text file.
%I A329143 #10 Jun 27 2020 03:43:28
%S A329143 0,0,1,1,1,2,1,1,3,2,2,3,2,2,4,4,5,3,5,2,10,5,6,5,10,5,11,7,13,6,15,6,
%T A329143 20,11,18,12,27,8,27,16,32,14,35,14,42,23,43,17,56,17,61,31,67,25,78,
%U A329143 28,88,41,89,35,119,39,116,60,131,52,154,52,170,75,182
%N A329143 Number of integer partitions of n whose augmented differences are a periodic word.
%C A329143 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A329143 A finite sequence is periodic if its cyclic rotations are not all different.
%F A329143 a(n) + A329136(n) = A000041(n).
%e A329143 The a(n) partitions for n = 2, 5, 8, 14, 16, 22:
%e A329143   11  32     53        95              5533              7744
%e A329143       11111  3221      5432            7441              9652
%e A329143              11111111  32222111        533311            554332
%e A329143                        11111111111111  33222211          54333211
%e A329143                                        1111111111111111  332222221111
%e A329143                                                          1111111111111111111111
%t A329143 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
%t A329143 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A329143 Table[Length[Select[IntegerPartitions[n],!aperQ[aug[#]]&]],{n,0,30}]
%Y A329143 The Heinz numbers of these partitions are given by A329132.
%Y A329143 The aperiodic version is A329136.
%Y A329143 The non-augmented version is A329144.
%Y A329143 Periodic binary words are A152061.
%Y A329143 Periodic compositions are A178472.
%Y A329143 Numbers whose binary expansion is periodic are A121016.
%Y A329143 Numbers whose prime signature is periodic are A329140.
%Y A329143 Cf. A000740, A027375, A328594, A329133, A329135, A325351, A325356, A329134.
%K A329143 nonn
%O A329143 0,6
%A A329143 _Gus Wiseman_, Nov 10 2019
%E A329143 More terms from _Jinyuan Wang_, Jun 27 2020