This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329144 #7 Nov 10 2019 20:28:51 %S A329144 0,0,1,1,1,3,1,2,5,3,2,8,2,5,9,7,5,12,7,7,19,9,9,21,12,15,23,18,17,29, %T A329144 21,19,42,23,31,42,38,29,53,43,44,62,49,52,79,55,72,75,87,63,117,79, %U A329144 104,107,120,99,156,117,143,147 %N A329144 Number of integer partitions of n whose differences are a periodic word. %C A329144 A finite sequence is periodic if its cyclic rotations are not all different. %e A329144 The a(n) partitions for n = 3, 6, 8, 9, 12, 15, 16: %e A329144 111 222 2222 333 444 555 4444 %e A329144 321 11111111 432 543 654 7531 %e A329144 111111 531 642 753 44332 %e A329144 32211 741 852 3332221 %e A329144 111111111 3333 951 4332211 %e A329144 222222 33333 22222222 %e A329144 3222111 54321 1111111111111111 %e A329144 111111111111 322221111 %e A329144 111111111111111 %t A329144 aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; %t A329144 Table[Length[Select[IntegerPartitions[n],!aperQ[Differences[#]]&]],{n,30}] %Y A329144 The Heinz numbers of these partitions are given by A329134. %Y A329144 The augmented version is A329143. %Y A329144 Periodic binary words are A152061. %Y A329144 Periodic compositions are A178472. %Y A329144 Numbers whose binary expansion is periodic are A121016. %Y A329144 Numbers whose prime signature is periodic are A329140. %Y A329144 Cf. A000740, A027375, A059966, A328594, A328596, A329132, A329135, A329136. %K A329144 nonn %O A329144 1,6 %A A329144 _Gus Wiseman_, Nov 10 2019