This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329163 #8 Nov 07 2019 04:08:36 %S A329163 1,1,3,9,22,59,156,405,1061,2786,7284,19071,49948,130738,342288, %T A329163 896175,2346134,6142287,16080852,42100020,110219366,288558380, %U A329163 755455128,1977807393,5177967900,13556094631,35490316938,92914858431,243254253904,636847905903,1667289469704,4365020491362 %N A329163 Expansion of Product_{k>=1} 1 / (1 - Sum_{j>=1} j * x^(j*(2*k - 1))). %C A329163 Weigh transform of A032198. %F A329163 G.f.: Product_{k>=1} 1 / (1 - x^(2*k - 1) / (1 - x^(2*k - 1))^2). %F A329163 G.f.: Product_{k>=1} (1 + x^k)^A032198(k). %F A329163 a(n) ~ c * phi^(2*n) / sqrt(5), where c = Product_{k>=2} 1/(1 - phi^(2 - 4*k)/(phi^(2 - 4*k) - 1)^2) = 1.07705428718361459418304978675229012... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Nov 07 2019 %t A329163 nmax = 31; CoefficientList[Series[Product[1/(1 - Sum[j x^(j (2 k - 1)), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x] %t A329163 nmax = 31; CoefficientList[Series[Product[1/(1 - x^(2 k - 1)/(1 - x^(2 k - 1))^2), {k, 1, nmax}], {x, 0, nmax}], x] %Y A329163 Cf. A032198, A102186, A329156. %K A329163 nonn %O A329163 0,3 %A A329163 _Ilya Gutkovskiy_, Nov 06 2019